Today a call came in to a local radio station about the need for bone marrow donor for a local child who was diagnosed with leukemia and now needs a bone marrow transplant. The local IBEW was hosting a swabbing event. You simply go in fill out a form and get your cheek swabbed. If you are a match, you will have to go to a specified hospital for the donation process. Here is part of the process from cancer.gov.
How are the donor’s stem cells matched to the patient’s stem cells in allogeneic or syngeneic transplantation?
To minimize potential side effects, doctors most often use transplanted stem cells that match the patient’s own stem cells as closely as possible. People have different sets of proteins, called human leukocyte-associated (HLA) antigens, on the surface of their cells. The set of proteins, called the HLA type, is identified by a special blood test.
In most cases, the success of allogeneic transplantation depends in part on how well the HLA antigens of the donor’s stem cells match those of the recipient’s stem cells. The higher the number of matching HLA antigens, the greater the chance that the patient’s body will accept the donor’s stem cells. In general, patients are less likely to develop a complication known as graft-versus-host disease (GVHD) if the stem cells of the donor and patient are closely matched. GVHD is further described in Question 14.
Close relatives, especially brothers and sisters, are more likely than unrelated people to be HLA-matched. However, only 25 to 35 percent of patients have an HLA-matched sibling. The chances of obtaining HLA-matched stem cells from an unrelated donor are slightly better, approximately 50 percent. Among unrelated donors, HLA-matching is greatly improved when the donor and recipient have the same ethnic and racial background. Although the number of donors is increasing overall, individuals from certain ethnic and racial groups still have a lower chance of finding a matching donor. Large volunteer donor registries can assist in finding an appropriate unrelated donor (see Question 19).
Because identical twins have the same genes, they have the same set of HLA antigens. As a result, the patient’s body will accept a transplant from an identical twin. However, identical twins represent a small number of all births, so syngeneic transplantation is rare.
How is bone marrow obtained for transplantation?
The stem cells used in BMT come from the liquid center of the bone, called the marrow. In general, the procedure for obtaining bone marrow, which is called “harvesting,” is similar for all three types of BMTs (autologous, syngeneic, and allogeneic). The donor is given either general anesthesia, which puts the person to sleep during the procedure, or regional anesthesia, which causes loss of feeling below the waist. Needles are inserted through the skin over the pelvic (hip) bone or, in rare cases, the sternum (breastbone), and into the bone marrow to draw the marrow out of the bone. Harvesting the marrow takes about an hour.
The harvested bone marrow is then processed to remove blood and bone fragments. Harvested bone marrow can be combined with a preservative and frozen to keep the stem cells alive until they are needed. This technique is known as cryopreservation. Stem cells can be cryopreserved for many years.

If you do not feel you want to donate bone marrow, then consider giving blood. I always though of blood being donated for surgeries and accidents. Never for cancer! Not until my son was the lucky recipient of someone's generously donated blood. In the first 2 weeks of his diagnosis, he received a blood, platelet, and plasma transfusions. These saved his life!
The above is the MINIMUM a child diagnosed Pre B Cell Acute Lymphoblastic Leukemia, a blood cancer, goes through. There are several different types of leukemia, but if you or someone were to be diagnosed with leukemia, this is the one you would want. Its a "best case" scenario.